A Direct Approach to Inference in Nonparametric and Semiparametric Quantile Regression Models
نویسندگان
چکیده
This paper makes two main contributions. First, we construct “density-free” confidence intervals and confidence bands for conditional quantiles in nonparametric and semiparametric quantile regression models. They are based on pairs of symmetrized k-NN quantile estimators at two appropriately chosen quantile levels. In contrast to Wald-type confidence intervals or bands based on the asymptotic distributions of estimators of the conditional quantiles, our confidence intervals and bands circumvent the need to estimate the conditional quantile density function, do not require the covariate to have a density function, and are very easy to compute. The advantages of our new confidence intervals are borne out in a simulation study. Second, we present a generic confidence interval for conditional quantiles using the rearranged quantile curves that is asymptotically valid for any quantile regression (parametric, nonparametric, or semiparametric), any method of estimation, and any data structure, provided that the conditional quantile function satisfies some mild smoothness assumptions and the original quantile estimator is such that its associated quantile process converges weakly to a Gaussian process with a covariance kernel proportional to the conditional quantile density function.
منابع مشابه
A Direct Approach to Inference in Nonparametric and Semiparametric Quantile Models
This paper makes two main contributions to inference for conditional quantiles. First, we construct a generic confidence interval for a conditional quantile from any given estimator of the conditional quantile via the direct approach. Our generic confidence interval makes use of two estimates of the conditional quantile function evaluated at two appropriately chosen quantile levels. In contrast...
متن کاملSequential design for nonparametric inference
Performance of nonparametric function estimates often depends on the choice of design points. Based on the mean integrated squared error criterion, we propose a sequential design procedure that updates model knowledge and optimal design density sequentially. The methodology is developed under a general framework covering a wide range of nonparametric inference problems, such as conditional mean...
متن کاملMETHODS FOR NONPARAMETRIC AND SEMIPARAMETRIC REGRESSIONS WITH ENDOGENEITY: A GENTLE GUIDE By
This paper reviews recent advances in estimation and inference for nonparametric and semiparametric models with endogeneity. It first describes methods of sieves and penalization for estimating unknown functions identified via conditional moment restrictions. Examples include nonparametric instrumental variables regression (NPIV), nonparametric quantile IV regression and many more semi-nonparam...
متن کاملVariable Selection in Nonparametric and Semiparametric Regression Models
This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...
متن کاملEditorial for the special issue on quantile regression and semiparametric methods
Quantile regression and other semiparametric models have been widely recognized as important data analysis tools in statistics and econometrics. Thesemethods donot rely strictly onparametric likelihoodbut avoid the curse of dimensionality associated with many nonparametric models. The journal Computational Statistics and Data Analysis regularly publishes papers on these semiparametric methods, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012